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We say that agreeing to agree is possible for an event E if there exist posterior beliefs 
of the agents with a common prior such that it is common knowledge that the agents’ 
posteriors for E coincide. We propose a notion called Dutch book which is a profile of 
interim contracts between an outsider and the agents based on the occurrence of E , such 
that the outsider makes positive profit in all states. We show that in a finite state space, 
when the agents cannot tell whether E occurred or not, agreeing to agree is possible for 
E if and only if there is no Dutch book on E . This characterization also holds in countable 
state spaces with two agents. We weaken the notion of Dutch book to characterize agreeing 
to agree in a countable state space with multiple agents, when each set in each agent’s 
information partition is finite.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Aumann (1976) demonstrates the impossibility of agreeing to disagree: for any posteriors with a common prior, if the 
agents’ posteriors for an event E are different (they disagree), then the agents cannot have common knowledge (agreement) 
of these posteriors. Here we ask what are the properties of an event E that make agreeing to agree possible. That is, under 
what conditions there are posteriors of the agents that are derived from a common prior, such that the agents have common 
knowledge (agreement) that their posteriors of E are the same (agree). Lehrer and Samet (2011) obtained a characterization 
of the possibility of agreeing to agree for two agents. In this paper, we study the possibility of agreeing to agree for an 
arbitrary finite set of agents.

Clearly, in any state at which an agent’s posterior for E is nontrivial, the agent cannot tell whether E occurred or not. 
We say in this case that the agent is ignorant of E . Lehrer and Samet (2011) observed that for two agents in a finite state 
space, ignorance of all agents in all states is also a sufficient condition for agreeing to agree. Consider the following example 
from Lehrer and Samet (2011).
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The eight states in Example 2 are depicted as black dots. The partition of firm 1 consists of two sets of states marked by the dark faces of the cube. The 
partitions of 2 and 3 are similarly defined. The four states of event E are circled. Firm 1 is ignorant of E: in each of its partition elements, it does not know 
whether E or ¬E occurred. Similarly, the other two firms are ignorant of E . Yet, there is no common prior such that the posterior probabilities of E are 
the same for all firms in all states.

Fig. 1. Ignorance does not imply possibility of agreeing to agree.

Example 1. Consider two firms 1, 2. Firm i can be either profitable, denoted by xi = 1, or unprofitable, xi = 0. There are four 
possible states of the world of the form (x1, x2), where each xi is 0 or 1. Firm i knows only whether it is profitable or not. 
We denote by 0 the state (0, 0) and all other states are denoted by the names of the profitable firms.

Consider first the event E that both firms have the same financial situation. That is, E consists of the state where 
x1 = x2 = 0 and x1 = x2 = 1. Clearly, both agents are ignorant of E at every state. There are many posteriors that have a 
common prior such that the firms have common knowledge that the posterior probabilities of E coincide. For instance, if 
we take the uniform distribution on the four states as the common prior, then both firms have the same posterior for E
namely, 1/2.

However, the characterization of Lehrer and Samet (2011) does not hold when the number of agents exceeds two. 
Specifically, ignorance is no longer sufficient for agreeing to agree with more than two agents, as demonstrated by the 
following example.

Example 2. Consider three firms 1, 2, 3. Firm i can be either profitable, denoted by xi = 1, or unprofitable, xi = 0. There are 
eight possible states of the world of the form (x1, x2, x3), where each xi is 0 or 1. Firm i knows only whether it is profitable 
or not. We denote by 0 the state (0, 0, 0) and all other states are denoted by the names of the profitable firms. For example, 
the state (1, 0, 1) is denoted by 13.

The states of the world are the vertices of the unit cube in R3. The partition for firm i consists of the face of the cube 
where xi = 0 and the face where xi = 1 (see Fig. 1).

Let E be the event that no more than one firm is profitable. That is, E = {0, 1, 2, 3}. Since each face contains at least one 
point from E and one point from ¬E , each firm is ignorant of E .

Suppose that agreeing to agree is possible for E , with posteriors of E being constantly p, and P is a common prior of 
the types. Consider the face x1 = 1. If the probability of this face is positive, then the requirement that the posterior of E
in this face is p says that P (1)/p = P (12, 13, 123)/(1 − p). If the probability of the face is 0, then this equality trivially 
holds. Writing the similar equations for the faces x2 = 1 and x3 = 1 and summing the equations, we have: P (1, 2, 3)/p =
[2P (12, 13, 23, 123) + P (123)]/(1 − p). The right hand side is at least 2P (¬E)/(1 − p) = 2 and the left hand side is at most 
P (E)/p = 1.1 We reach a contradiction. Thus, agreeing to agree is impossible although all firms are ignorant in every state.

This example calls for an alternative characterization of agreeing to agree. For this purpose, we introduce the notion of 
Dutch book. Consider the following contract between an outsider and some agent i. The contract specifies an amount f i to 
be transferred from i to the outsider if E is the case and in the opposite direction if E is not the case. The transfer is made 
ex post, that is, it requires the knowledge of the state, or at least the knowledge whether E is true or not true in the state. 
However, the contract is an interim contract, in the sense that the amount transferred, f i , is known to i.2 A Dutch book is 
a profile of such interim contracts, one for each agent, under which the outsider profits regardless of the true state.3 Note 

1 Since the posteriors of E are all p, it follows that P (E) = p and thus P (¬E) = 1 − p.
2 That is, f i : � →R is measurable with respect to the information partition of each agent; see Section 3.1.
3 Thanks to ignorance, posterior probabilities exist such that by accepting a Dutch book, each agent obtains a positive expected payoff in every states.
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that, like ignorance, the notion of Dutch book involves no probabilistic terms such as prior or posterior. We show that in a 
finite state space, the possibility of agreeing to agree is equivalent to the absence of a Dutch book (Theorem 1).

Example 2 (continued). Since agreeing to agree for E is impossible, we can find a Dutch book on E . Indeed, consider an 
ex ante contract f i which is 1 at the states in the face xi = 0 and −1 at the states in the face xi = 1. The outsider gets 3
dollars at ω = 0 and ω = 123 and gets 1 dollar at the other six states.

Example 2 is a case where agreeing to agree is impossible and there exists a Dutch book. We now present another 
example where agreeing to agree is possible and there is no Dutch book.

Example 3. In Example 2, consider the event E that all firms have the same financial situation. That is E = {0, 123}. Consider 
the prior P defined by P (0) = P (123) = 1/4 and P (ω) = 1/12 for all the other six states. Then, the posterior of E on each 
face is 1/2 and agreeing to agree is possible for E .

Since agreeing to agree for E is possible, there cannot be a Dutch book on E . To see this, suppose that there exists 
a Dutch book ( f1, f2, f3). As ω = 0 ∈ E , it follows that the sum of the contracts is positive. That is, 

∑
i f i(xi = 0) > 0. 

Similarly, at ω = 123 ∈ E , 
∑

i f i(xi = 1) > 0. For all the other 6 states, event E does not happen. Therefore, for each such ω, 
either f i(xi = 0) + f j(x j = 0) + fk(xk = 1) < 0 or f i(xi = 1) + f j(x j = 1) + fk(xk = 0) < 0 where i, j, and k are all different. 
Summing up these 6 inequalities results in 3 

∑
i f i(xi = 0) + 3 

∑
i f i(xi = 1) < 0 which is a contradiction.

This characterization has a spirit similar to well known equivalence results between the existence of a common prior 
and the absence of agreeable bets.4 Indeed, both results hold in a finite state space. However, while the transferred amounts 
in agreeable bets are allowed to vary arbitrarily across different states, in a Dutch book they can only vary across different 
information sets and are constant on each one of them.

Next, we study agreeing to agree in countable state spaces. For such state spaces with two agents, Lehrer and Samet
(2011) showed that agreeing to agree is possible if and only if there exists a nonempty finite event F at which it is 
common knowledge that the agents cannot tell whether or not E occurred and this still holds true after F becomes common 
knowledge. This characterization also implies that whenever agreeing to agree is possible for two agents, it is possible with 
a prior that has a finite support.

In a countable state space with two agents, we show that our characterization remains true; moreover, a Dutch book 
exists if and only if a bounded Dutch book exists. Hence, with only two agents, agreeing to agree is possible if and only if 
there is no (bounded) Dutch book.

When there are more than two agents, we need to weaken the notion of Dutch book to characterize agreeing to agree. 
In Example 4, we construct a three-agent space in which agreeing to agree is impossible for E and yet there exists no 
Dutch book on E . Furthermore, in Example 5, we construct another three-agent space in which agreeing to agree is possible 
for E but only with a prior that has an infinite support. Hence, Lehrer and Samet’s characterization does not hold, either. 
Moreover, in the latter example, there is an unbounded Dutch book on E . Hence, the boundedness of a Dutch book becomes 
essential for the case with more than two agents.

To characterize agreeing to agree in a countable space with more than two agents, consider interim contracts under 
which the outsider never loses more than ε. We say that there is no weak Dutch book if at some state, the outsider’s profit 
in these interim contracts vanishes with ε. Absence of a weak Dutch book is similar to the notion of strong trade consistency 
in Lehrer and Samet (2014). We show that when each information set of each agent is finite, agreeing to agree is possible if 
and only if there is no bounded weak Dutch book (Theorem 3). Unlike the equivalence between the existence of a common 
prior and strong trade consistency proved in Lehrer and Samet (2014, Theorem 4), the equivalence between the possibility 
of agreeing to agree and the absence of a bounded weak Dutch book does not hold without this finiteness assumption.

The rest of the paper is organized as follows. Section 2 presents the basics of the model of knowledge and beliefs. In 
Section 3, we characterize agreeing to agree in terms of the existence of Dutch book in a finite state space. Section 4 studies 
the case with a countable state space. Some of the proofs are in Appendix A.

2. Preliminaries

Knowledge spaces. A knowledge space for a set N of n agents, is a tuple (�, (�i)i∈N ), where � is a countable state space, 
and for each i, �i is a partition of �. We denote by �i(ω) the element of �i that contains ω. Say a knowledge space is 
finite when � is finite. Subsets of � are called events. We say that agent i knows event E at ω if �i (ω) ⊆ E .
Types. The set of all probability distributions on � is denoted by �(�). We consider �(�) as a subset of the space l1(�) of 
absolutely summable sequences, in which �(�) is closed. A type function of agent i for the knowledge space (�, (�i)i∈N )

is a function ti: � → �(�). We write tωi instead of ti(ω). The type of i at ω is tωi . We require of the type function ti that for 
each π ∈ �i , it takes the same value in all the states in π , which we denote by tπi , and that tπi (π) = 1.

4 See, for example, Morris (1994), Samet (1998), Bonanno and Nehring (1999), Feinberg (2000), Ng (2003), Heifetz (2006), and Lehrer and Samet (2014).
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Priors. A prior for i’s type function ti is a probability distribution P ∈ �(�), such that for each π ∈ �i with P (π) > 0, 
tπi (·) = P (· | π). A probability distribution P which is a prior for all agents is called a common prior. A type profile that has 
a common prior is consistent. For any probability P ∈ �(�), one can define types of agents by taking conditional probability 
of P on each π when P (π) > 0 and define the types arbitrarily on π when P (π) = 0. The probability P is obviously a 
common prior for these types.
Expectations. For a real valued function f on � and P ∈ �(�), we denote by EP ( f ) the expectation of f with respect 
to P , and by EP ( f | �i) the conditional expectation of f with respect to �i , which is a �i -measurable function on �. 
If Etωi ( f ) exists for each ω, we define the function Ei( f ) on � by, Ei( f )(ω) = Etωi ( f ). Obviously, Ei( f ) is �i -measurable, 
and when P is a prior of the type function ti , then EP ( f | �i) = Ei( f ) almost surely. For an event E we denote by 1E

the indicator function on E , that is, 1E (ω) = 1 for all ω ∈ E and 1E (ω) = 0 for all ω ∈ ¬E , the complement of E . Clearly, 
Ei(1E)(ω) = tωi (E).

3. Agreeing to agree

Definition 1. Let E be an event in a knowledge space. We say that agreeing to agree is possible for E if the space has a 
consistent type profile (ti)i∈N such that for some p ∈ (0, 1), tπi (E) = p for each i and π ∈ �i , or equivalently, Ei(1E ) = p for 
all i.5

The possibility of agreeing to agree is closely related to the notion of ignorance. We say that agent i is ignorant of E at ω, 
if she does not know E and does not know ¬E at ω. That is, if �i(ω) ∩ E �= ∅ and �i(ω) ∩¬E �= ∅. We say that i is ignorant 
of E if i is ignorant of E in all states. If agreeing to agree is possible for E , then for each i and π ∈ �i , 0 < tπi (E) < 1. 
Therefore, π ∩ E �= ∅ and π ∩ ¬E �= ∅. Thus we conclude:

Claim 1. If agreeing to agree is possible for E, then all agents are ignorant of E.

Ignorance of all agents is also sufficient for the possibility of agreeing to agree for E in the following case.

Proposition 1. In a finite knowledge space with two agents, if both agents are ignorant of E, then agreeing to agree is possible for E.6

This follows from the fact that in this case we can construct a loop. A loop is an event which consists of 2n distinct 
points ω1, ω′

1, . . .ωn, ω′
n for some integer n ≥ 1, such that {ω1, . . . , ωn} ⊆ E , {ω′

1, . . . , ω
′
n} ⊆ ¬E and for each k = 1, . . . , n

ω′
k ∈ �1(ωk) and ωk ∈ �2(ω

′
k−1), where ω′

0 = ω′
n . Each π that contains points of the loop has the same number of points 

of the loop from E and from ¬E . Thus the uniform distribution on the loop induces types on such π ’s such that tπi (E) = 1/2
for i = 1, 2. The elements π that do not contain states of the loop have probability 0, and we are free to choose any type 
on them. Due to ignorance we can choose the types such that tπi (E) = 1/2 for i = 1, 2. Thus agreeing to agree is possible 
for E . For details, see Lehrer and Samet (2011).

For more than two players, ignorance is a necessary condition for the possibility of agreeing to agree for E but, as 
demonstrated by Example 2, not a sufficient condition. In order to formulate a necessary and sufficient condition, it is 
enough to find a sufficient condition for the case that ignorance holds. Under the assumption of ignorance, the requirement 
for all types in Definition 1 can be relaxed.

Claim 2. If all agents are ignorant of E, then agreeing to agree is possible for E if and only if for some P ∈ �(�), and p ∈ (0, 1), 
EP (1E | �i) = p a.s. for all i.

Proof. Suppose that for some profile of types (ti)i∈N with a common prior P , Ei(1E ) = p for all i, then EP (1E | �i) = Ei(1E)

a.s., and we are done. Conversely, suppose that EP (1E | �i) = p a.s. for all i. For each i and ω such that P (�i) > 0 define 
tωi (·) = P (· | �i). Else, the ignorance of i guarantees the existence of a probability distribution with support �i(ω) such that 
tωi (E) = p. We define tωi to be such a probability. Obviously, P is a common prior for this profile of types and tωi (E) = p for 
all i and ω. �

Finally, we can replace the number p in Definition 1 and Claim 2 by the number 1
2 .

Claim 3. If all agents are ignorant of E, then agreeing to agree is possible for E if and only if for some P ∈ �(�), EP (1E | �i) = 1
2 a.s. 

for all i.

5 This is consistent with the definition of the possibility of agreeing to agree in Lehrer and Samet (2011); see Section 3.2. We also discuss agreeing to 
agree with p = 0 and p = 1 in 3.2.

6 Refer to Lehrer and Samet (2011).
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Proof. Suppose for some Q and p ∈ (0, 1), EQ (1E | �i) = p a.s. for each i. Let P (·) = 1
2 Q (· | E) + 1

2 Q (· | ¬E). Then, P ∈ �(�). 
Suppose that Q (π) > 0 for some i and π ∈ �i . Then P (E ∩ π) = 1

2 Q (E ∩ π | E) = 1
2 [Q (E ∩ π)/Q (π)][Q (π)/Q (E)] =

1
2 [Q (E | π)][Q (π)/p] = 1

2 Q (π). Similarly, P (¬E ∩π) = 1
2 Q (π). Thus, P (E | �i(ω)) = 1

2 for each ω such that P (�i(ω)) > 0. 
But, P (X) = 0 if and only if Q (X) = 0, and thus EP (1E | �i) = 1

2 a.s. with respect to P . �
3.1. Dutch books

We now describe a necessary and sufficient condition for the possibility of agreeing to agree for E in finite knowledge 
spaces with any number of agents, where all of them are ignorant of E .

Let C = 1E − 1¬E . An interim contract between an outsider and agent i is given by a real-valued function f i: � →R which 
is measurable with respect to �i , that specifies a transfer of f i C from the agent to the outsider. Due to the measurability 
requirement, agent i knows the value of f i , which is traded, and hence the description of this contract as interim.

Definition 2. A Dutch book on E is a profile of interim contracts ( f i)i∈N such that: 
∑

i f i(ω)C(ω) > 0 for all ω. That is, the 
net transfer to the outsider is positive in all states. Equivalently, ( f i)i∈N is a Dutch book if 

∑
i f i(ω) > 0 for all ω ∈ E and ∑

i f i(ω) < 0 for all ω /∈ E .

Note that by ignorance, we can define a profile of types (ti)i∈N , such that for each i and π ∈ �i , tωi (E) is close to 1 if f i

is negative on π , and close to 0 if f i is positive on π . Thus, Etπi ( f i C) < 0 for each i; that is, the expected payoff is positive 
in all states for every agent and the agents are always willing to trade. Obviously, the existence of a Dutch book on E , like 
the possibility of agreeing to agree on E , is a property that depends only on the knowledge space and the event E .

Theorem 1. In a finite knowledge space where all agents are ignorant of E, agreeing to agree is possible for E if and only if there is no 
Dutch book on E.

3.2. Remarks

Variation on Definition 1: Lehrer and Samet (2011) have a slightly different definition of the possibility of agreeing to agree 
for E . According to their definition, it is required that common knowledge of agreement has a positive prior probability. 
Formally, it is required that for some p and for a common prior P of the type profile (ti)i∈N , P (K ∞(A)) > 0, where 
A = {ω | tωi (E) = p, for all i ∈ N}. Obviously, this condition is implied by Definition 1. Moreover, this condition holds when 
Definition 1 holds for a subspace which consists of some elements of the meet. Thus, all our results can be easily restated 
with slight variations using the definition of Lehrer and Samet (2011).

Agreeing to agree with p = 0 and p = 1: We require in Definition 1 that in all states the posterior of all agents is a non-
trivial p, that is, p ∈ (0, 1). The cases p = 0 and p = 1 are much simpler. A necessary and sufficient condition that tπi (E) = 0
for all i and π ∈ �i is that all i do not know E in all states. That is, for each i and π ∈ �i , π ∩ ¬E �= ∅. Necessity is 
obvious. For sufficiency, let P be any probability for which P (E) = 0. The posteriors for π ∈ �i such that P (π) > 0 must 
satisfy tπi (E) = 0 and in all other π ’s we can define arbitrarily the types such that this equality holds, in virtue of the 
condition. Similarly, a necessary and sufficient condition that tπi (E) = 1 for all i and π ∈ �i is that all i do not know ¬E in 
all states.

Dutch books and bets: A bet (bi)i∈N , consists of real valued functions bi on � such that 
∑

i bi = 0. The bet is agreeable 
if for each i, Etωi (bi) > 0. Unlike Dutch books, there is no measurability requirements on bets. Dutch books and bets are 
related in the following way. For a given Dutch book ( f i)i∈N , add an agent 0 to the set of agents, with partition �0 =
{�} and arbitrary type function t�

0 . Define for i ∈ N , bi = − f i C , and b0 = ∑
i∈N fi C . Then 

∑
i∈N∪{0} bi = 0. Since ( f i)i∈N

is a Dutch book, agent 0 has positive expectation of her bet; moreover, with ignorance, there are type functions (ti)i∈N

under which each agent i ∈ N has positive expectation of bi . Thus, (bi)i∈N∪{0} is an agreeable bet. Note, that although 
the bi ’s for i ∈ N are measurable, b0 may not be measurable with respect to �0. The relation of Dutch books to bets 
shows that the type functions (ti)i∈N cannot have a common prior. Indeed, if P is a common prior of (ti)i∈N , then define 
t�

0 = P . Then all the agents in N ∪ {0} have a common prior and an agreeable bet which is impossible (see Morris, 1994;
Samet, 1998, and Feinberg, 2000).

4. Countable knowledge space

For countable spaces we need to distinguish between bounded and unbounded Dutch books. A Dutch book ( f i)i∈N is 
bounded if f i ∈ l∞ (�) for each i ∈ N . However, for the case of two agents, the difference between the two does not matter.

Proposition 2. In a countable knowledge space with two agents, if there is a Dutch book on E, there is a bounded Dutch book on E.



Y.-C. Chen et al. / Games and Economic Behavior 93 (2015) 108–116 113
Proof. Suppose that ( f1, f2) is a Dutch book. That is, f1(ω) + f2(ω) is positive for ω ∈ E and negative for ω ∈ ¬E . Let 
g : R →R be a strictly increasing and bounded function and define g1 = g ◦ f1 and g2 = (−g) ◦ (− f2). Then, g1 and g2 are 
bounded. Moreover, as f1 > − f2 on E , and f1 < − f2 on ¬E , it follows by the monotonicity of g , that g1 > −g2 on E , and 
g1 < −g2 on ¬E . Thus, (g1, g2) is a bounded Dutch book on E . �

We show in Example 5 that Proposition 2 does not hold for more than two agents. The case of two agents is also special 
because the equivalence in Theorem 1 for finite knowledge spaces extends to countable spaces with two agents.

Theorem 2. In a countable knowledge space with two agents where all agents are ignorant of E, agreeing to agree is possible for E if 
and only if there is no Dutch book on E.

With more than two agents the “only if” part of Theorem 2 still holds.

Proposition 3. In a countable knowledge space, if there exists a bounded Dutch book on E, then agreeing to agree is impossible for E.

The proof can be taken verbatim from the proof of Theorem 2, since the expectations in the latter can be taken also in 
the infinite case when the Dutch book is bounded. However, the following example shows that the converse does not hold. 
In this example agreeing to agree is impossible, yet, there is no Dutch book, not even unbounded.

Example 4. Consider three firms {1, 2, 3}. Each firm is involved in two projects that yield profits xi and yi in Q[−1,1], the set 
of rational numbers in the interval [−1, 1]. Thus, the set of states � consists of tuples (x1, y1, x1, y1, x1, y1) ∈ Q6

[−1,1]. Let 
Xi, Yi : � →Q[−1,1] be the natural projections. We assume that each firm knows only its own profits, and thus the partition 
of firm i, �i , is generated by (Xi, Yi).

Let E be the event that (x1 + x2 + x3, y1 + y2 + y3) > (0, 0) in the lexicographic order, that is,

E = {X1 + X2 + X3 > 0} ∪ {X1 + X2 + X3 = 0 and Y1 + Y2 + Y3 > 0}.
We first show that agreeing to agree is impossible for E . Assume by contradiction that for some P ∈ �(�), EP (C |�i) = 0

a.s., then:

EP XiC = EP EP (XiC |�i) = EP XiE
P (C |�i) = 0

for every i. Therefore,

EP (X1 + X2 + X3)C = 0. (1)

Similarly,

EP (Y1 + Y2 + Y3)C = 0. (2)

But the definition of C implies that (X1 + X2 + X3)C ≥ 0. From this inequality and (1), it follows that (X1 + X2 + X3)C = 0
a.s. which implies that X1 + X2 + X3 = 0 a.s. Thus, by the definition of E , E = {Y1 + Y2 + Y3 > 0} a.s. By this equality and 
the definitions of C , it follows that (Y1 + Y2 + Y3)C ≥ 0 a.s. Moreover, since P ({Y1 + Y2 + Y3 > 0}) = P (E) > 0, it follows 
that P ((Y1 + Y2 + Y3)C > 0 which contradicts (2).

We now show that there exists no Dutch book on E . The existence of a Dutch book means that there are functions 
gi : Q[−1,1] × Q[−1,1] → R such that 

∑
i gi(xi, yi) > 0 if (x1, y1, x2, y2, x3, y3) ∈ E and 

∑
i gi(xi, yi) < 0 otherwise. Consider 

a sequence (ak) of positive numbers in Q[−1,1] such that 2ak+1 < ak for each k. Then, as (ak, 0, −ak+1, 0, −ak+1, 0) ∈ E

g1(ak,0) + g2(−ak+1,0) + g3(−ak+1,0) > 0.

Two similar inequalities hold when we start with g2(ak, 0) and g3(ak, 0). Summing the three inequalities, and denoting 
g(x, y) = g1(x, y) + g2(x, y) + g3(x, y), we conclude that g(ak, 0) > −2g(−ak+1, 0). Similarly, as (−ak+1, 0, ak+2, 0, ak+2, 0) ∈
¬E it follows that g(−ak+1, 0) + 2g(ak+2, 0) < 0. The two inequalities imply that g(ak, 0) > 4g(ak+2, 0) for all k. As 
(ak, 0, ak, 0, ak, 0) ∈ E , it follows that g(ak, 0) > 0 for each k. This with the last inequality implies that

lim
k→∞

g(ak,0) = 0. (3)

Now, for each k, (ak, 0, 0, −1, 0, −1) ∈ E , and therefore g(ak, 0) + 2g(0, −1) > 0. From (3) it follows that g(0, −1) ≥ 0. 
However, this is a contradiction since (0, −1, 0, −1, 0, −1) ∈ ¬E .

The next example shows that Proposition 3 cannot be strengthened by dropping the boundedness of the Dutch book. In 
this example there exists an unbounded Dutch book, however, agreeing to agree is possible for E .
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Example 5. The set of agents is {1, 2, 3}, and � = N × {1, 2, 3}, where N is the set of nonnegative integers. The partition of 
player i, �i , consists of sets {(n, i), (n + 1, i′), (n + 1, i′′)} for n > 0, and the set {(0, 1), (0, 2), (0, 3), (1, i′), (1, i′′)}, where i′
and i′′ are the two agents other than i. Consider the event E = {(n, i)| n is even, i ∈ {1, 2, 3}}.

To see that agreeing to agree is possible for E , consider P ∈ �(N) that satisfies for each i and n > 0, P (n, i) = 1
2n+2 , and 

P (0, i) = 1
12 . Then for each i and π in �i , P (E | π) = 1

2 . To see that there exists an unbounded Dutch book, consider for 
each i the �i -measurable function f i which takes the value (−3)n on {(n, i), (n + 1, i′), (n + 1, i′′)} for n > 0 and the value 1 
on {(0, 1), (0, 2), (0, 3), (1, i′), (1, i′′)}.

In Theorem 1, we show that the possibility of agreeing to agree implies that there is no Dutch book. The proof can be 
carried out for countable spaces if the existence of the expectations is guaranteed. In case the common prior which makes 
possible agreeing to a agree has a finite support, the expectations exist even for unbounded functions. Hence, this proof 
implies the following.

Proposition 4. In a countable knowledge space, if there exists a Dutch book on E, then agreeing to agree with a finite support common 
prior is impossible for E.

Example 4 shows that the converse implication does not hold. Lehrer and Samet (2011) showed that for two agents, 
agreeing to agree is possible if and only if it is possible with a common prior that has a finite support. Example 5 shows 
that this does not hold for countable spaces. In this example, it follows by Proposition 4 that agreeing to agree with a 
common prior with a finite support is impossible. Yet, in this example agreeing to agree is possible.

The previous examples suggest that we need to weaken the notion of Dutch book to characterize agreeing to agree in a 
countable state space with multiple agents. Following the idea in Lehrer and Samet (2014), we obtain such a characterization 
under a mild restriction on the structure of the knowledge space. In what follows, we adopt the convention that the 
supremum over an empty set is −∞.

Definition 3. Let Fε be the set of profiles of interim contracts ( f i)i∈N such that f i ∈ l∞ (�) for each i ∈ N and 
∑

i∈N fi C >

−ε. We say that there is a bounded weak Dutch book on E if

inf
ε>0

sup
( f i)∈Fε

∑
i∈N

fi C (ω) = ∞,∀ω ∈ �.

If there is a bounded Dutch book ( f i)i∈N on E , then there is a bounded weak Dutch book on E . Indeed, since ∑
i∈N fi C > 0, it follows that (M fi)i∈N ∈Fε for all ε > 0 and M > 0. Thus, for each ω,

inf
ε>0

sup(
f i

)
∈Fε

∑
i∈N

f i C (ω) ≥ sup
M>0

∑
i∈N

M fi C (ω) = ∞.

Remark 1. In Lehrer and Samet (2014, p. 171), a bet (bi)i∈N is said to be ε-agreeable if for each i, Ei(bi) (ω) > −ε. The set 
of all ε-agreeable bets is denoted by Bε . Lehrer and Samet (2014, p. 171) say that a profile of type functions (ti)i∈N is not 
strongly trade consistent if infε>0 sup(bi)i∈N ∈Bε

Ei(bi) (ω) = ∞ for every i and every ω. Analogous to Section 3.2, existence 
of a bounded weak Dutch book and strong trade consistency are related in the following way. Add an agent 0 to the set of 
agents, with partition �0 = {�} and arbitrary type function t�

0 . For any interim contract ( f i)i∈N ∈ Fε , define for i ∈ N , bi =
− f i C , and b0 = ∑

i∈N fi C . Then 
∑

i∈N∪{0} bi = 0. Moreover, with ignorance, there are type functions (ti)i∈N (independently of 
f i ) under which each agent i ∈ N has positive expectation of bi . Hence, (bi)i∈N ∈ Bε . Suppose that there is a bounded weak 
Dutch book. Then, infε>0 sup( f i)∈Fε

∑
i∈N fi C (ω) = ∞ for every ω ∈ �. It follows that infε>0 sup(bi)i∈N∪{0}∈Bε

E0(b0) (ω) = ∞. 
Thus, (ti)i∈N∪{0} is not strongly trade consistent.

We say that a knowledge space 
(
�,(�i)i∈N

)
is locally finite if for each i and π ∈ �i , π is a finite set. We now show that 

in a countable and locally finite knowledge space, the possibility of agreeing to agree for E is equivalent to the absence of 
bounded weak Dutch books on E .7 The proof is similar to Theorem 4 in Lehrer and Samet (2014) and we provide a sketch 
of the proof in Appendix A.

Theorem 3. In a countable and locally finite knowledge space where all agents are ignorant of E, agreeing to agree is possible for E if 
and only if there is no bounded weak Dutch book on E.

7 It is straightforward to see that the result still holds if for all ω ∈ � and for all i ∈ N, �i (ω) ∩ E and �i (ω) ∩ ¬E is a finite union of sets in the join 
(coarsest common refinement) of the agents’ information partitions and the partition {E,¬E}.
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The “only if” part holds even without the assumption of local finiteness, by Proposition 3. But, unlike Theorem 4 in Lehrer 
and Samet (2014), the “if” part of Theorem 3 fails without the local finiteness restriction. This can be seen in Example 4, 
where local finiteness does not hold. We will show here that 

∑
i∈N fi C (ω0) < 3ε, where ω0 = (0,−1,0,−1,0,−1) for 

any ( f i)i∈N ∈ Fε , implying that there is no bounded weak Dutch book on E . Yet, as we have shown, agreeing to agree is 
impossible for E , in this example.

Let (gi)i∈N be the functions in Example 4 that describe a profile of interim contracts ( f i)i∈N . Assume that this pro-
file is in Fε . For the sequence (ak) in this example it follows that g(ak, 0) > −2g(−ak+1, 0) − 3ε and −g(−ak+1, 0) >
2g(ak+2, 0) − 3ε. Hence, g(ak, 0) > 4g(ak+2, 0) − 9ε. This implies that lim supk g(ak, 0) < 3ε. In particular, for some k, 
g(ak, 0) < 3ε. Moreover, g(ak, 0) + 2g(0, −1) > −3ε. Hence, g(0, −1) > −3ε. Since 

∑
i∈N fi C (ω0) = −g (0,−1), it follows 

that 
∑

i∈N fi C (ω0) < 3ε.

Appendix A

Proof of Theorem 1. Let

A =
{∑

i∈N

fi C : ( f i)i∈N is a profile of interim contracts

}
.

Obviously, there is no Dutch book on E if and only if A is disjoint from R�++ , the strict positive orthant of R� . We show 
that A and R�++ are disjoint if and only if agreeing to agree is possible for E .

Suppose that agreeing to agree is possible for E . Then, by Claim 3 there exists P such that EP (C |�i) = 0 a.s. for every 
i ∈ N . Let ( f i)i∈N be interim contracts. Then,

EP (
∑

i

f i C) =
∑

i

EP ( f iC) =
∑

i

EP (EP ( f i C |�i)) =
∑

i

EP ( f iE
P (C |�i)) =

∑
i

EP ( f i · 0) = 0. (4)

Thus, 
∑

i f i C cannot be positive everywhere, i.e., R�++ ∩ A �= ∅.
Conversely, suppose that R�++ and A are disjoint. Since both sets are convex, there is a non-zero vector P in R�++ that 

separates them8: 〈P , f 〉 ≤ 0 ≤ 〈P , r〉 for every f ∈ A and r ∈ R�++ . The reason for the constant 0 in these inequalities is that 
0 ∈ A and 0 is in the closure of R�++ . Now, vectors of the form ε1� + 1{ω} are in R�++ for every ω ∈ � and ε > 0. Thus, 
0 ≤ 〈P , (ε1� + 1ω)〉 = ε + P ({ω}), and we conclude that P is non-negative. Since it is non-zero we can assume that P is a 
probability distribution.

Fix i and π ∈ �i . By setting f i = ±1π and f j = 0 for j �= i one may infer that ±1π C ∈ A. Thus, 〈P , 1π C〉 ≤ 0 and 
〈P , 1π C〉 ≥ 0, which implies that 〈P , 1π C〉 = EP (1π C) = 0. This implies that when P (π) > 0, tπi (E) = 1/2. Since, all agents 
are ignorant of E , Claim 2 implies that agreeing to agree is possible for E . �
Proof of Theorem 2. A chain is a finite sequence π1, . . . , πk of elements of �1 ∪�2, such for each i ≥ 1, πi and πi+1 belong 
to different partitions, and if πi ∈ �1, then πi ∩πi+1 ∩ E �= ∅, and when πi ∈ �2, then πi ∩πi+1 ∩¬E �= ∅. If there is a chain 
in which π1 = πk , then we can construct a loop, as in Claim 1, and therefore agreeing to agree is possible for E .

Suppose that agreeing to agree is impossible for E . Define a binary relation � on �1 ∪ �2, where π � π ′ when there 
is a chain that starts at π and ends at π ′ . Clearly, � is transitive. Moreover, since we assumed that agreeing to agree is 
impossible for E , there is no loop on E and thus � is irreflexive. Hence, � is a strict partial order. By Fishburn (1970)
[Theorem 2.5], there is a function γ : �1 ∪ �2 → R such that π � π ′ implies γ (π) > γ

(
π ′) . Now define an interim 

contract ( f1, f2) by

f1 (π) = γ (π) for π ∈ �1; f2 (π) = −γ (π) for π ∈ �2.

To see that ( f1, f2) is a Dutch book note, that for each ω ∈ E , �1 (ω) ∩ �2 (ω) ∩ E �= ∅. Hence, �1 (ω) � �2 (ω). Thus, 
γ (�1 (ω)) > γ (�2 (ω)) and hence f1(�1 (ω)) + f2 (�2 (ω)) > 0. Similarly, for each ω ∈ ¬E , �1 (ω)∩�2 (ω)∩¬E �=∅, and 
thus f1(�1 (ω)) + f2 (�2 (ω)) < 0.

Now, assume that there is a Dutch book ( f i)i∈N on E , which by Proposition 2, we may assume is bounded. Suppose 
to the contrary, agreeing to agree is possible for E , then, by the boundedness of ( f i)i∈N , we can show, as in 4, that there 
exists P such that EP

(∑
i∈N fi C

) = 0. Since 
∑

i∈N fi C (ω) > 0 for all ω, it follows that EP
(∑

i∈N fi C
)

> 0. We have a 
contradiction. �
Proof of Theorem 3. The “only if” part is similar to the proof of the “only if” part in Theorem 2. For the “if” part, define, as 
in the Proof of Theorem 1, A = {∑

i∈N fi C : ( f i)i∈N is a profile of interim contracts
}

.

8 〈a, b〉 denotes the inner product of a and b. In particular, if a is a probability vector, then 〈a, b〉 is the expectation of b with respect to the probability a, 
Ea(b).
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Let L− be the strict negative orthant of l∞ (�) and B be the unit ball in l∞ (�). Then, similar to the proof of 
Lehrer and Samet (2014, Theorem 4), by the nonexistence of a bounded weak Dutch book on E , we can show that 
for some ε > 0 and ω0, conv

(
A,1ω0 + εB

) ∩ L− = ∅. Since both conv
(

A,1ω0 + εB
)

and L− are convex and have non-
empty interior, there is a nonzero continuous functional ϕ on l∞ (�) (namely, a finitely additive measure on �) such that 
0 <

∑
ω∈� ϕ (1ω) < ∞ and ϕ (g) ≥ 0 ≥ ϕ (h) for all g ∈ conv

(
A,1ω0 + εB

)
and h ∈ L− . Define a probability function P on �

by P (ω) = ϕ (1ω)/ 
∑

ω′∈� ϕ (1ω′ ).
To see that agreeing to agree is possible for E under P , set, for each π ∈ �i , f i = 1π and f j = 0 for j �= i. Then, f i C ∈ A, 

Similarly, − f i C ∈ A. Thus, ϕ (1π C) = 0. That is, ϕ (1π∩E)−ϕ (1π∩¬E) = 0. Since the knowledge space is locally finite, each π
is finite. Since ϕ is finitely additive, it follows that ϕ (1π∩E ) = ∑

ω∈π∩E ϕ (1ω), and similarly ϕ (1π∩¬E) = ∑
ω∈π∩¬E ϕ (1ω). 

Dividing ϕ (1π∩E ) − ϕ (1π∩¬E) = 0 by 
∑

ω′∈� ϕ (1ω′ ), we get

P (π ∩ E) − P (π ∩ ¬E) = 0.

Hence, agreeing to agree is possible for E under P . �
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